Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Human skeleton-based action recognition algorithm based on spatiotemporal attention graph convolutional network model
LI Yangzhi, YUAN Jiazheng, LIU Hongzhe
Journal of Computer Applications    2021, 41 (7): 1915-1921.   DOI: 10.11772/j.issn.1001-9081.2020091515
Abstract917)      PDF (1681KB)(922)       Save
Aiming at the problem that the existing human skeleton-based action recognition algorithms cannot fully explore the temporal and spatial characteristics of motion, a human skeleton-based action recognition algorithm based on Spatiotemporal Attention Graph Convolutional Network (STA-GCN) model was proposed, which consisted of spatial attention mechanism and temporal attention mechanism. The spatial attention mechanism used the instantaneous motion information of the optical flow features to locate the spatial regions with significant motion on the one hand, and introduced the global average pooling and auxiliary classification loss during the training process to enable the model to focus on the non-motion regions with discriminability ability on the other hand. While the temporal attention mechanism automatically extracted the discriminative time-domain segments from the long-term complex video. Both of spatial and temporal attention mechanisms were integrated into a unified Graph Convolution Network (GCN) framework to enable the end-to-end training. Experimental results on Kinetics and NTU RGB+D datasets show that the proposed algorithm based on STA-GCN has strong robustness and stability, and compared with the benchmark algorithm based on Spatial Temporal Graph Convolutional Network (ST-GCN) model, the Top-1 and Top-5 on Kinetics are improved by 5.0 and 4.5 percentage points, respectively, and the Top-1 on CS and CV of NTU RGB+D dataset are also improved by 6.2 and 6.7 percentage points, respectively; it also outperforms the current State-Of-the-Art (SOA) methods in action recognition, such as Res-TCN (Residue Temporal Convolutional Network), STA-LSTM, and AS-GCN (Actional-Structural Graph Convolutional Network). The results indicate that the proposed algorithm can better meet the practical application requirements of human action recognition.
Reference | Related Articles | Metrics
Instance segmentation based lane line detection and adaptive fitting algorithm
TIAN Jin, YUAN Jiazheng, LIU Hongzhe
Journal of Computer Applications    2020, 40 (7): 1932-1937.   DOI: 10.11772/j.issn.1001-9081.2019112030
Abstract889)      PDF (2929KB)(590)       Save
Lane line detection is an important part of intelligent driving system. The traditional lane line detection method relies heavily on manual selection of features, which requires a large amount of work and has low accuracy when it is interfered by complex scenes such as object occlusion, illumination change and road abrasion. Therefore, designing a robust detection algorithm faces a lot of challenges. In order to overcome these shortcomings, a lane line detection model based on deep learning instance segmentation method was proposed. This model is based on the improved Mask R-CNN model. Firstly, the instance segmentation model was used to segment the lane line image, so as to improve the detection ability of lane line feature information. Then, the cluster model was used to extract the discrete feature information points of lane lines. Finally, an adaptive fitting method was proposed, and two fitting methods, linear and polynomial, were used to fit the feature points in different fields of view, and the optimal lane line parameter equation was generated. The experimental results show that the method improves the detection speed, has better detection accuracy in different scenes, and can achieve robust extraction of lane line information in various complex practical conditions.
Reference | Related Articles | Metrics